_FILE_ | Taille |
---|
0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url | 328.00 B |
0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url | 286.00 B |
0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url | 163.00 B |
0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url | 239.00 B |
0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url | 294.00 B |
0. Websites you may like/How you can help Team-FTU.txt | 237.00 B |
1. Module-1 Introduction to Course/1. 1.1 Introduction to the Course.mp4 | 17.68 MB |
1. Module-1 Introduction to Course/1. 1.1 Introduction to the Course.vtt | 2.51 kB |
1. Module-1 Introduction to Course/2. 1.2 Pre-Requisite.mp4 | 3.51 MB |
1. Module-1 Introduction to Course/2. 1.2 Pre-Requisite.vtt | 776.00 B |
1. Module-1 Introduction to Course/3. 1.3 What you will Learn.mp4 | 3.70 MB |
1. Module-1 Introduction to Course/3. 1.3 What you will Learn.vtt | 1.90 kB |
1. Module-1 Introduction to Course/4. 1.4 Techniques of Machine Learning.mp4 | 6.06 MB |
1. Module-1 Introduction to Course/4. 1.4 Techniques of Machine Learning.vtt | 4.15 kB |
2. Module-2 Introduction to validation and its Methods/1. 2.1 Introduction to Cross Validation.mp4 | 3.45 MB |
2. Module-2 Introduction to validation and its Methods/1. 2.1 Introduction to Cross Validation.vtt | 2.36 kB |
2. Module-2 Introduction to validation and its Methods/2. 2.2 Cross Validation Method.mp4 | 5.33 MB |
2. Module-2 Introduction to validation and its Methods/2. 2.2 Cross Validation Method.vtt | 3.58 kB |
2. Module-2 Introduction to validation and its Methods/3. 2.3 Caret package.mp4 | 15.76 MB |
2. Module-2 Introduction to validation and its Methods/3. 2.3 Caret package.vtt | 8.21 kB |
2. Module-2 Introduction to validation and its Methods/3.1 Programs.zip.zip | 10.96 kB |
3. Module-3 Classification/1. 3.1 Introduction to Classification.mp4 | 3.21 MB |
3. Module-3 Classification/1. 3.1 Introduction to Classification.vtt | 1.85 kB |
3. Module-3 Classification/2. 3.2 KNN- K Nearest Neighbors.mp4 | 6.08 MB |
3. Module-3 Classification/2. 3.2 KNN- K Nearest Neighbors.vtt | 3.64 kB |
3. Module-3 Classification/3. 3.3 Implementation of KNN Algorithm.mp4 | 14.67 MB |
3. Module-3 Classification/3. 3.3 Implementation of KNN Algorithm.vtt | 6.58 kB |
3. Module-3 Classification/3.1 Programs.zip.zip | 10.96 kB |
3. Module-3 Classification/4. 3.4 Naive-Bayes Classifier.mp4 | 5.01 MB |
3. Module-3 Classification/4. 3.4 Naive-Bayes Classifier.vtt | 3.03 kB |
3. Module-3 Classification/5. 3.5 Implementation of Naive-Bayes Classifier.mp4 | 34.04 MB |
3. Module-3 Classification/5. 3.5 Implementation of Naive-Bayes Classifier.vtt | 14.80 kB |
3. Module-3 Classification/5.1 Programs.zip.zip | 10.96 kB |
3. Module-3 Classification/6. 3.6 Linear Discriminant Analysis.mp4 | 2.36 MB |
3. Module-3 Classification/6. 3.6 Linear Discriminant Analysis.vtt | 1.24 kB |
3. Module-3 Classification/7. 3.7 Implementation of Linear Discriminant Analysis.mp4 | 6.40 MB |
3. Module-3 Classification/7. 3.7 Implementation of Linear Discriminant Analysis.vtt | 2.91 kB |
3. Module-3 Classification/7.1 Programs.zip.zip | 10.96 kB |
4. Module-4 Black Box Method-Neural network and SVM/1. 4.1 Introduction to Artificial Neural Network.mp4 | 3.16 MB |
4. Module-4 Black Box Method-Neural network and SVM/1. 4.1 Introduction to Artificial Neural Network.vtt | 1.62 kB |
4. Module-4 Black Box Method-Neural network and SVM/2. 4.2 Conceptualizing of Neural Network.mp4 | 5.32 MB |
4. Module-4 Black Box Method-Neural network and SVM/2. 4.2 Conceptualizing of Neural Network.vtt | 2.47 kB |
4. Module-4 Black Box Method-Neural network and SVM/3. 4.3 Implement Neural Network in R.mp4 | 12.31 MB |
4. Module-4 Black Box Method-Neural network and SVM/3. 4.3 Implement Neural Network in R.vtt | 4.94 kB |
4. Module-4 Black Box Method-Neural network and SVM/3.1 Programs.zip.zip | 10.96 kB |
4. Module-4 Black Box Method-Neural network and SVM/4. 4.4 Back Propagation.mp4 | 2.64 MB |
4. Module-4 Black Box Method-Neural network and SVM/4. 4.4 Back Propagation.vtt | 1.64 kB |
4. Module-4 Black Box Method-Neural network and SVM/5. 4.5 Implementation of Back Propagation Network.mp4 | 4.29 MB |
4. Module-4 Black Box Method-Neural network and SVM/5. 4.5 Implementation of Back Propagation Network.vtt | 1.52 kB |
4. Module-4 Black Box Method-Neural network and SVM/5.1 Programs.zip.zip | 10.96 kB |
4. Module-4 Black Box Method-Neural network and SVM/6. 4.6 Introduction to Support Vector Machine.mp4 | 4.94 MB |
4. Module-4 Black Box Method-Neural network and SVM/6. 4.6 Introduction to Support Vector Machine.vtt | 2.80 kB |
4. Module-4 Black Box Method-Neural network and SVM/7. 4.7 Implementation of SVM in R.mp4 | 8.84 MB |
4. Module-4 Black Box Method-Neural network and SVM/7. 4.7 Implementation of SVM in R.vtt | 3.81 kB |
4. Module-4 Black Box Method-Neural network and SVM/7.1 Programs.zip.zip | 10.96 kB |
5. Module-5 Tree Based Models/1. 5.1 Decision Tree.mp4 | 4.90 MB |
5. Module-5 Tree Based Models/1. 5.1 Decision Tree.vtt | 2.60 kB |
5. Module-5 Tree Based Models/2. 5.2 Implementation of Decision Tree.mp4 | 8.70 MB |
5. Module-5 Tree Based Models/2. 5.2 Implementation of Decision Tree.vtt | 3.67 kB |
5. Module-5 Tree Based Models/2.1 Programs.zip.zip | 10.96 kB |
5. Module-5 Tree Based Models/3. 5.3 Bagging.mp4 | 7.74 MB |
5. Module-5 Tree Based Models/3. 5.3 Bagging.vtt | 3.57 kB |
5. Module-5 Tree Based Models/3.1 Programs.zip.zip | 10.96 kB |
5. Module-5 Tree Based Models/4. 5.4 Boosting.mp4 | 10.80 MB |
5. Module-5 Tree Based Models/4. 5.4 Boosting.vtt | 5.95 kB |
5. Module-5 Tree Based Models/4.1 Programs.zip.zip | 10.96 kB |
5. Module-5 Tree Based Models/5. 5.5 Introduction to Random Forest.mp4 | 4.09 MB |
5. Module-5 Tree Based Models/5. 5.5 Introduction to Random Forest.vtt | 2.38 kB |
5. Module-5 Tree Based Models/6. 5.6 Implementation of Random Forest.mp4 | 7.43 MB |
5. Module-5 Tree Based Models/6. 5.6 Implementation of Random Forest.vtt | 3.37 kB |
5. Module-5 Tree Based Models/6.1 Programs.zip.zip | 10.96 kB |
6. Module-6 Clustering/1. 6.1 Introduction to Clustering.mp4 | 2.88 MB |
6. Module-6 Clustering/1. 6.1 Introduction to Clustering.vtt | 1.79 kB |
6. Module-6 Clustering/2. 6.2 K-Means Clustering.mp4 | 11.28 MB |
6. Module-6 Clustering/2. 6.2 K-Means Clustering.vtt | 7.64 kB |
6. Module-6 Clustering/3. 6.3 Implementation of K-Means Clustering.mp4 | 8.15 MB |
6. Module-6 Clustering/3. 6.3 Implementation of K-Means Clustering.vtt | 3.37 kB |
6. Module-6 Clustering/3.1 Programs.zip.zip | 10.96 kB |
6. Module-6 Clustering/4. 6.4 Hierarchical Clustering.mp4 | 7.15 MB |
6. Module-6 Clustering/4. 6.4 Hierarchical Clustering.vtt | 3.45 kB |
6. Module-6 Clustering/4.1 Programs.zip.zip | 10.96 kB |
7. Module-7 Regression/1. 7.1 Predicting with Linear Regression.mp4 | 4.57 MB |
7. Module-7 Regression/1. 7.1 Predicting with Linear Regression.vtt | 2.58 kB |
7. Module-7 Regression/2. 7.2 Implementation of Linear Regression.mp4 | 12.31 MB |
7. Module-7 Regression/2. 7.2 Implementation of Linear Regression.vtt | 5.85 kB |
7. Module-7 Regression/2.1 Programs.zip.zip | 10.96 kB |
7. Module-7 Regression/3. 7.3 Multiple Covariates Regression.mp4 | 10.26 MB |
7. Module-7 Regression/3. 7.3 Multiple Covariates Regression.vtt | 5.21 kB |
7. Module-7 Regression/3.1 Programs.zip.zip | 10.96 kB |
7. Module-7 Regression/4. 7.4 Logistic Regression.mp4 | 4.66 MB |
7. Module-7 Regression/4. 7.4 Logistic Regression.vtt | 2.66 kB |
7. Module-7 Regression/5. 7.5 Implementation of Logistic Regression.mp4 | 6.60 MB |
7. Module-7 Regression/5. 7.5 Implementation of Logistic Regression.vtt | 3.14 kB |
7. Module-7 Regression/5.1 Programs.zip.zip | 10.96 kB |
7. Module-7 Regression/6. 7.6 Forecasting.mp4 | 19.85 MB |
7. Module-7 Regression/6. 7.6 Forecasting.vtt | 2.90 kB |
7. Module-7 Regression/7. 7.7 Implementation of Forecasting.mp4 | 38.13 MB |
7. Module-7 Regression/7. 7.7 Implementation of Forecasting.vtt | 2.65 kB |
7. Module-7 Regression/7.1 Programs.zip.zip | 10.96 kB |